THE EMERALD CONFERENCE

Produced by MJBizScience

Genomic tools for Cannabis sativa and Psilocybe cubensis propagation

Use Powerful Genomic Data to Advance Your Operation Kevin McKernan Chief Scientific Officer Medicinal Genomics

THE EMERALD **Transparent and Public Data** Resources

Produced by MIBizScience

Check for updates

HOME LAB

I CHANNEL

Search

O Comments (2)

bioR_γiv THE PREPRINT SERVER FOR BIOLOGY

bioRxiv is receiving many new papers on coronavirus SARS-CoV-2. A reminder: these are prelimin not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in new

New Results

Sequence and annotation of 42 cannabis genomes reveals extensive copy number variation in cannabinoid synthesis and pathogen resistance genes

Kevin J. McKernan, Yvonne Helbert, Liam T. Kane, Heather Ebling, Lei Zhang, Biao Liu, Zachary Eaton, Stephen McLaughlin, 🐵 Sarah Kingan, Primo Baybayan, Gregory Concepcion, Mark Jordan, Alberto Riva, William Barbazuk, D Timothy Harkins

RESEARCH ARTICLE

(REVISED) Cannabis microbiome sequencing reveals several mycotoxic fungi native to dispensary grade Cannabis flowers [version 2; peer review: 2 approved]

🔀 Kevin McKernan 🚯, Jessica Spangler, Lei Zhang, Vasisht Tadigotla, Yvonne Helbert, Theodore Foss, Douglas R. Smith Author details

This article is included in the Agriculture, Food and Nutrition gateway.

Abstract

RESEARCH ARTICLE Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests [version 1; peer review: 3 approved, 1 approved with reservations]

Kevin McKernan 🔞 1, Jessica Spangler 1, Yvonne Helbert 1, Ryan C. Lynch 1, Adrian Devitt-Lee 1, Lei Zhang¹, Wendell Orphe¹, Jason Warner¹, Theodore Foss¹, Christopher J, Hudalla², Matthew Silva², Mouglas R. Smith¹

42 Cannabis genome public Largest Cannabis DNA sequence repository. 10X larger than all previous submissions

In 2016 we published the first **Cannabis Flower Microbiomes** studies

Check for updates

Published TYM qPCR primers that navigate cannabis ITS problems

THE EMERALD CONFERENCE

Transparent and Public Pata Resources

F1000Research	Search				
BROWSE GATEWAYS & COLLECTIONS HO	W TO PUBLISH ~ ABOUT ~	BLOG			
Home » Browse » A draft reference assembly of the Psilocybe	cubensis genome				
DATA NOTE REVISED A draft reference assembly of the <i>Psilocybe</i> <i>cubensis</i> genome [version 2; peer review: 2 approved]					
Previously titled: A draft sequence reference cubensis genome	of the Psilocybe	I VIEWS			
Kevin McKernan (1) ¹ , Liam T. Kane (1) ¹ , Seth Crawford Trippe ² , Stephen McLaughlin ¹	¹² , Chen-Shan Chin ³ , Aaron	152 C DOWNLOADS			

Most complete Psilocybe cubensis genome reference

Home » Browse » A whole genome atlas of 81 Psilocybe genomes as a resource for psilocybin... Check for updates dt.

RESEARCH ARTICLE (REVISED) A whole genome atlas of 81 Psilocybe genomes as a resource for psilocybin production. [version 2; peer

F1000Research

METHOD ARTICLE

81 additional Psilocybe genomes

F1000Research

Home » Browse » Whole genome sequencing of colonies derived from cannabis flowers..

Check for updates

652

(REVISED) Whole genome sequencing of colonies derived from cannabis flowers and the impact of media selection on benchmarking total yeast and mold detection tools [version 2; peer review: 2 approved]

🔀 Kevin McKernan 🔞, Yvonne Helbert, Liam Kane 🔞, Nathan Houde, Lei Zhang, Stephen McLaughlin + Author details

Comparison of TYM qPCR to PDA, PDA with CAMP, DRBC via Whole Genome sequencing of 45 genomes

THE EMERALD CONFERENCE

AOAC certified Aspergillus and Sal/STEC Flowers and MIPs

- DRBC 5 day plating >100 inclusion organisms on TYM >40 exclusion organisms
- Recalibrate on new media

Enumeration Tests in Validation

THE EMERALD Non Trivial CONFERENCE

> PeerJ. 2021 May 13;9:e11446. doi: 10.7717/peerj.11446. eCollection 2021.

Cannabinoids from inflorescences fractions of Trema orientalis (L.) Blume (Cannabaceae) against human pathogenic bacteria

Tiwtawat Napiroon ¹, Keerati Tanruean ², Pisit Poolprasert ², Markus Bacher ³, Henrik Balslev ⁴, Manop Poopath ⁵, Wichai Santimaleeworagun ⁶

Affiliations + expand PMID: 34035994 PMCID: PMC8126263 DOI: 10.7717/peerj.11446 Free PMC article

TI

Figure 3

Minimum inhibitory concentration (MIC, µg/mL) of inflorescence fraction (S3).

THE EMERALD CONFERENCE

SFPREPRINTS -

Add a Preprint Search Support Donate

Pathogenic Enterobacteriaceae require multiple culture temperatures for detection in Cannabis sativa L.

Kevin McKernan, Yvonne Helbert, Liam T. Kane, Lei Zhang, Nathan Houde, Anne Bennett, Juliana Silva, Heather Ebling, Stephen McLaughlin

Conflict of Interest: Yes -

AUTHOR ACCEPTION

Public Data: Available 👻

Preregistration: Not applicable -

Yersinia enterocolitica Entero (blue) gPCR dilution series with SCCG (green) internal control

Aeromonas hydrophila Entero (blue) gPCR dilution series with SCCG (green) internal control 10³ SCCGIC

% Classified Other Pantoea

%Reads Classified as Pantoea in Samples >1% Pantoea

Aeromonas hydrophila ATCC 7966 @30°C vs 36°C RAC plates (top) and EB plates (bottom)

Pantoea agalomerans: 30°C vs 36°C RAC plates(top) and EB plates (bottom)

THE EMERALD 42 Cannabis Genomes

bioRxiv is receiving many new papers on coronavirus SARS-CoV-2. A reminder: these are preliminal not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news

New Results

Comments (2)

Sequence and annotation of 42 cannabis genomes reveals extensive copy number variation in cannabinoid synthesis and pathogen resistance genes

Kevin J. McKernan, Yvonne Helbert, Liam T. Kane, Heather Ebling, Lei Zhang, Biao Liu, Zachary Eaton, Stephen McLaughlin,
Sarah Kingan, Primo Baybayan,
Gregory Concepcion, Mark Jordan, Alberto Riva, William Barbazuk,
Timothy Harkins
https://doi.org/10.1101/2020.01.03.894428

This article is a preprint and has not been certified by peer review [what does this mean?].

THE EMERALD CONFERENCE What Can We Learn from the Cannabis Genome?

PM PM susceptible Resistant

THE EMERALD HiC + HiFi on a Cannabis Trio

Table 1A. Pacific Biosciences coverage and sequencing statistics of three Jamaican Lion cannabis genomes. Genomes were sequenced with continuous long read mode (CLR). F1 was female. BUSCO: benchmarking universal single-copy orthologs. Software and database versions: BUSCO.py 3.0.2, Augustus 3.3.21, Hmmer 3.2.1, Blast 2.7.1, eudicotyledons_odb10(Simao et al. 2015).

Coverage	Mother	Father	Daughter (JL5)
N50	3,283,100	1,668,042	3,491,975
Contig number (> 5 Kb)	481	1264	658
Genome size (bp)	875,793,298	1,009,156,132	999,122,115
Complete BUSCOs (%)	96.1	97.0	97.3
Single-copy BUSCOs (%)	83.5	63.3	63.5
Duplicated BUSCOs (%)	12.6	33.7	33.8
Sequencing statistics			
Unique molecular yield (Gb)	125	150	84.8
N50 RL (<u>Kb</u>)	34.6	35.6	50
N50 Subread (Kb)	20	24	19

The 33X coverage HiFi assembly delivered a higher N50 (5.2Mb) assembly BUSCO Primary (93.7%C, 82.8% single, 10.9% duplicate) BUSCO Primary + Alts (97.4%, 41.2% single, 56.2% duplicate)

THE EMERALD HIC + HIFI CONFERENCE

THE EMERALD HiCanu Telomeres

Supplementary Table <u>1.Contigs</u> in the Jamaican Lion HiFi-<u>HiCanu</u> assembly with terminal Telomeric sequences and their respective lengths.

Contig	Telomere Len (Kb)	Contig Length
tig00005375	25.7	250,103
tig00005432	2.9	230,364
tig00005460	23.8	142,906
tig00005486	7.7	167,894
tig00005511	1.8	170,382
tig00005736	16.6	102,145
tig00005782	35.2	85,691
tig00005821	26	67,613
tig00005878	26.9	107,231
tig00005912	22.4	27,710
tig00005913	17.8	27,527
tig00005915	23.1	44,441
tig00006147	13.2	32,702
tig00006532	5.3	35,243
tig00007704	18.9	26,164
tig00043130	4.2	401,659
tig00043131	42.9	45,132

Supplemental Figure 18. Jamaican Lion <u>Hicanu</u> telomeric contigs (right) mapped to the Cs10 assembly (Left) with <u>minimap</u> and displayed with <u>Circos</u>.

THE EMERALD Genetic Map Concordance with HiC CONFERENCE

63% AT rich 63% Long Terminal Repeats (LTR) Lots of Simple Sequence Repeats (SSRs)

JL scaffolds organized according to BLAST to Cs10 Chromosomes

JL Hi-C mapped to Cs10 reference

THE EMERALD
CONFERENCEGenetic Map Concordance with HiC
85K SNP Chip - CannSNP90

THE EMERALD
CONFERENCE40 WGS with ILMN NovaSeq
5 cycles of PCR with NEB UMIs

THE EMERALD CONFERENCE CNVs Galore (Copy Number Variation)

© 2022 MJBiz, a division of Emerald X, LLC

Cannabinoids Genes

Pathogen Response Genes

THE EMERALD CONFERENCE Functional Validation of Cloned Cannabis Genes

THE EMERALD
CONFERENCEAspergillus niger Growth in TSB
4X – 64X reduction with Cannabis Chitinase and Cannabis TLP

THE EMERALD CONFERENCE CONFERENCE

THE EMERALD
CONFERENCE**2Mb CBCA deletion**
Often co-deleted with Pathogen Response genes

THE EMERALDDifferential WGS Coverage Validates YCONFERENCEchromosome

THE EMERALD RE (F ONFF

StrainSEEK: 3.2Mb &10Mb Agilent Panel WGS & CannSNP90K data input

Blockchain based Genetic registry: The timestamps on your data are immutable

V KANNAPEDIA

ABOUT STRAINS PHYLOTREE CONTACT US Q

THE EMERALD CONFERENCE Differential WGS Coverage Validates Y chromosome

CBDA in yeast makes ~20:1 CBDA:THCA

Type IV plant

- 1. No CBDAS gene.
- 2. Two Amino Acid Changing Mutations in THCAS
- 3. No CBCAS gene.
- 4. Zero THCA detected in 10%+ CBGA cultivar

THE EMERALD CONFERENCE

Kannapedia.net reports

NEAREST GENETIC RELATIVES IN PHYLOS DATASET:

Nearest Phylos Strain	Number of Overlapping SNPs	Concordar
SRR4448183	78	75

NEAREST GENETIC RELATIVES IN LYNCH DATASET:

Nearest Lynch Strain	Number of Overlapping SNPs	Concordar
SRR3495217	7	7

BLOCKCHAIN REGISTRATION INFORMATION

Transaction ID: fc01b0724f1cf53add58c49494dbcb7d901e28f2c945706d52714e87d82b73c9 Stamping Certificate: PDF

SHASUM Hash: b21a1f370d90ff4a0423cffedaa12b6e4091f0a46a1e0674b25823fff7197f1f

Comparison to other public datasets and blockchain time stamps

THE EMERALD CONFERENCE

StrainSEEK Sequence Coverage of the Bt:Bd allele predicts chemotype

CBDAS No Coverage on THCA

Bt/Bd ALLELE COVERAGE

Type IV No Coverage on THCAS No Coverage on CBDAS.

January 25, 2022

Missense mutations in THCAS are associated with Cannabigerolic Acid expression in Cannabis sativa L.

🔟 Kevin McKernan; Lei Zhang; Yvonne Helbert; 🔟 Liam T Kane; 🔟 McLaughlin, Stephen

The chemical expression of THCA and CBDA has been previously attributed to copy number gains and losses in THCAS and CBDAS. Here we describe an alternative mechanism to ablate THCAS activity in 5 CBGA dominant cannabis varietals. Five cannabis cultivars from three unique cultivators surprisingly contain a THCAS gene but also share homozygous Pro333Arg and Ser355Asn mutation: in THCAS. Pro333Arg is commonly found in THCAS dominant varietals but is uniquely found in a homozygous state in CBGA varietals in conjunction with homozygous Ser355Asn missense mutations. These results hint at convergent evolution in cannabinoid synthesis where selection for and against THCA synthesis has been applied.

lllumina Read Ratio, Allele Frequency

Figure 4. Allele frequency (Illumina read count ratio) in 103 samples with P333R mutations inPreprint Open AccessTHCAS. The samples with Allele ratio of 1 have their cultivar name added. Two samples areSRR#s NCBI.

Produced by MJBizScience

Kannapedia

Registered Strains Cannabis Phylotree Logir

8 strains found Sort by Accession Date

Mar 31, 2020
Mar 31, 2020
Jan 1, 2020
Jan 1, 2020
Aug 12, 2019

Search parameters S Variant List contains EFW9900002 id parameter

Active THCAS 4416000 4416500 4417500 4417000 position

6 200-

100

0

0 **CBCAS** Coverage 2.0 1.5

IGV: Start, Jump

C90: 0.000

Active CBCAS

0

/ariants (iants (THCAS, CBDAS, and CBCAS)							search	search variants						
GENE		HGVS.C	\$	HGVS.P	¢	ANNOTATION	¢	ANNOTATION IMPACT	\$ CONTIG	CONTIG POS	¢	REF/ALT	¢	VAR FREQ	-
THCAS		c.1064G>A		p.Ser355Asn		missense variant		moderate	contig741	4416764 IGV: Start, Jump		с/т		NGS: 0.018 C90: 0.000	
THCAS		c.998C>G		p.Pro333Arg		missense variant		moderate	contig741	4416830		G/C		NGS: 0.182	

Type IV (CBGA) that contain a THCA gene

Update results		
	Bt/Bd Alle	ele Coverage
	0.050	Active CBDAS
	0.025	
	d 0.000-	
	-0.029	

THE EMERALD CONFERENCE Produced by MJBizScience

Many different tools

SS2 vs SS3, same samples: RSP12016

GOOD	BETTER	BEST
CannSNP90 CHIP FOR GENOTYPING PLANTS view the technical sheet	StrainSEEK® For finding novel variants in key genomic areas	WHOLE GENOME FOR THE MOST COMPLETE, FUTURE-PROC GENOMIC PROFILE
NP CHIP GENOTYPING OBE SINGLE LOCATIONS)	DNA SEQUENCING PANEL (SEQUENCE AREAS OF INTEREST)	SHOTGUN DNA SEQUENCING (SEQUENCE ENTIRE GENOME)
	10M+ BASES SEQUENCED	✓ 876M BASES SEQUENCED
	✓ 300K-500K SNPS	✓ 3M-15M SNPS
	✓ TAGS IN 7,500+ GENES	🧭 27K+ GENES
GENDER DETERMINATION	GENDER DETERMINATION	Sender Determination
EMOTYPE DETERMINATION	✓ CHEMOTYPE DETERMINATION	CHEMOTYPE DETERMINATIO
SNP LOCI FOR:	SULL/PARTIAL COVERAGE FOR:	STULL COVERAGE FOR:
CANNABINOID SYNTHASE GENES (THCA, CBDA, CBCA)	CANNABINOID SYNTHASE GENES (THCA, CBDA, CBCA)	CANNABINOID SYNTHASE GENES (THCA, CBDA, CBCA)
DISEASE RESISTANCE	DISEASE RESISTANCE	DISEASE RESISTANCE
TERPENES	✓ TERPENES	✓ TERPENES
ENOME-WIDE TAG DISTRIBUTION	S FLAVINOIDS	FLAVINOIDS
StrainSEEK OVERLAP TAGS	S FLOWERING	FLOWERING
	SEEDING	SEEDING
	⊘ OTHERS	MANY, MANY OTHERS
DOWNLOADABLE VARIANT DATA	DOWNLOADABLE VARIANT, MAPPING, & SEQUENCE DATA	DOWNLOADABLE VARIANT, MAPPING, & SEQUENCE DATA
KANNAPEDIA REPORT INCLUDED	✓ KANNAPEDIA REPORT INCLUDED	⊘ KANNAPEDIA REPORT INCLUDED

(PR

 \odot

CH

0

 \odot

*

 \odot

Genes of Interest - compare coverage 10Mb vs 3.2Mb panel

- Genes of interest have been divided into 9 distinct categories (complete genes lists are <u>here</u>)
- 1. <u>Flowering genes</u> 23 genes that were pulled out of the annotation for Jamaican Lion Female matching the term "flower"
- 2. <u>TLP1 genes</u> 6 genes that were included in *Fig 6B* of MGC's <u>40-genome pre-print</u> implicated in Powdery Mildew Resistance
- 3. <u>TLP genes</u> The 23 TLP genes included in Fig6A
- 4. Known Disease Associated 280 genes pulled out of JL annotation matching term "disease"
- 5. <u>Kannapedia select genes of interest</u> 27 genes manually curated by MGC scientists for which MGC report variants on in Kannapedia (there are also flowering genes on this list, but these have been pulled out into the *Flowering Genes* group for this analysis
- 6. Chitinase 35 Chitinase genes included in Fig6A
- 7. MLO 23 genes included in Fig6A
- 8. <u>CBCA "Pathogen Response" genes</u> 35 genes on contig756 of the JL Female reference also included in Fig6A
- 9. Fig 6A all 90 genes included in Fig6A (includes TLP, Chitinase, MLO, and CBCA Pathogen response from above)

THE EMERALD Breeding Using CannSNP90 Bead Chip CONFERENCE

CannSNP90 bead chip

- Content
- Validation
- Applications

Molecular Breeding

- Evolution of Molecular Markers
- Applications of Genotyping
- Construction of Hemp Genetic Map

THE EMERALD CONFERENCE CannSNP90 Case Study by Oregon CBD

Multiple Locus Mixed Linear Model (MLMM)

Dr. Hsuan Chen

THE EMERALD CONFERENCE CannSNP90 Case Study by Oregon CBD

Background in Open Source Fungal Genomics

ΤΗΕ ΕΜΕΡΔΙ Ο

Pacific Biosciences HiFi assembly N50 3.3Mb, 97.6% BUSCO complete

Phase Genomics Hi-C Chromatin Capture map of Psilocybe cubensis

Psilocybe cubensis is now in 13 chromosomes

Figure 1. HiC contact map displayed in Juicebox. 13 large scaffolds emerge with total of 26 scaffolds. Mitochondria is on scaffold 20

THE EMERALD CONFERENCE Produced by MJBizScience

Kannapedia.net: Open Source Fungal Genomics

THE EMERALD CONFERENCE

Psilocybe Mating Type Loci identified on Chr. 1

Produced by MJBizScience

Psilocybe has at least 4 genders

Mating Type Loci can guide which strains will make compatible crosses

THE EMERALD CONFEREN

Psilocydia- The Kannapedia fork for Psilocybe

Produced by MJBizScience

No. of Contigs (>= 25K bp)	Total Length (>= 50K bp)	Total Length
414	21,463,896	42,071,211
No. of Contigs (>= 50K bp)	Total Contigs	GC (%)
198	5,188	46.06
Total Length (>= 25K bp)	Largest Contig	N50
29,251,567	432,312	51,488

Variants	search variants						
GENE	HGVS.C	ANNOTATION	ANNOTATION IMPACT	CONTIG	CONTIG P	os	REF/ALT
PsiD	c.*1447A>G	downstream gene variant	modifier	scaffold_7	2934482 IGV: Start, .	Jump	T/C

NEAREST GENETIC RELATIVES (ALL SAMPLES)

o 0.007 Penvy-1-PS (PSP10045)

♦ 0.240 Tampa-1-SW (PSP10050)

♦ 0.246 Tampa-2-SW (PSP10051)

o 0.008 Penvy-Col4-PS (PSP10043)

0.233 0.350 0.467 0 0.250 O clone distance □ sibling distance ♦ more distant

- ♦ 0.979 Bplus-3-PS (PSP10001)
- © 0.893 Huautla-3-PS (PSP10005)

MOST GENETICALLY DISTANT STRAINS (ALL SAMPLES)

0.500

0.750

1.000

- 0.885 Huautla-3-redo-SW (PSP10031)
- ♦ 0.840 Maui-2-PS (PSP10041)
- ♦ 0.830 Bplus-2-redo-SW (PSP10015)

Psilocybin Synthase Gene Coverage

Psilocybe microbomes

Produced by MJBizScience

 \bigcap

THE EMERALD

ONFEREN

Supplementary Figure 2. Taxon annotated GC-Plot of *P.azurescens* (OR-Coast Left) and *P.galindoi* (Right) demonstrate some metagenomic bacterial contamination in the *P.galindoi* library. Contigs with Psilocybin producing genes in *P.galindoi* have been identified using tBLASTn.

McKernan et al

THE EMERALD CONFERENCE Produced by MIBizScience

14 Viruses/Viroid assays

Released

- 1. Hop Latent Viroid
- 2. Lettuce Chlorosis Virus
- 3. Cannabis Cryptic Virus
- 4. Beat Curly Top Virus
- 5. Tobacco Mosaic Virus

Pipeline

- 1. Tobacco Streak Virus
- 2. Tobacco Ring Spot Virus
- 3. Arabis Mosaic Virus
- 4. Cucumber Mosaic Virus
- 5. Hop Mosaic Virus
- 6. Alfalfa Mosaic Virus
- 7. Tomato Ring Spot Virus
- 8. Rasberry Dwarf Virus
- 9. Hop Stunt Viroid

THE EMERALD CONFERENCE **qPCR enables the detection of pathogens that don't culture.**

Triplex Virus/Viroid test Hops Latent Viroid, Lettuce Chlorosis Virus, Cannabis Cryptic Virus 1

THE EMERALD CONFERENCE LCV Virus Phenotype More Pronounced in Flowering

THE EMERALD CONFERENCE Hop Latent Viroid is in the Roots, Stems and leaves

Sample Number	Sample Name	Target (FAM)	Ct (FAM)	Target (HEX)	Ct (HEX)
10.1	Chem 4 Mom	HLVd	ND	SCCG	29.73
10.1	Chem 4 Mom	HLVd	ND	SCCG	30.25
10.2	Chem 4 Clone 1	HLVd	ND	SCCG	30.60
10.2	Chem 4 Clone 1	HLVd	ND	SCCG	30.67
10.3	Chem 4 Clone 2	HLVd	ND	SCCG	31.83
10.3	Chem 4 Clone 2	HLVd	ND	SCCG	30.81
11.1	Motorbreath Clone 1	HLVd	ND	SCCG	31.10
11.1	Motorbreath Clone 1	HLVd	ND	SCCG	31.28
11.2	Motorbreath Clone 2	HLVd	ND	SCCG	30.22
11.2	Motorbreath Clone 2	HLVd	ND	SCCG	29.09
12.1	Old Family Purp Rooted, Leaf	HLVd	22.14	SCCG	31.07
12.1	Old Family Purp Rooted, Leaf	HLVd	20.78	SCCG	29.61
12.1	Old Family Purp Rooted, Root	HLVd	23.59	SCCG	29.59
12.1	Old Family Purp Rooted, Root	HLVd	22.59	SCCG	29.57
13.1	Sour Diesel Mom	HLVd	ND	SCCG	30.13
13.1	Sour Diesel Mom	HLVd	ND	SCCG	30.27
13.2	Sour Diesel Clone 1	HLVd	ND	SCCG	30.24
13.2	Sour Diesel Clone 1	HLVd	ND	SCCG	30.18
13.3	Sour Diesel Clone 2	HLVd	ND	SCCG	31.13
13.3	Sour Diesel Clone 2	HLVd	ND	SCCG	31.80
13.4	Sour Diesel Clone 3	HLVd	ND	SCCG	31.07
13.4	Sour Diesel Clone 3	HLVd	ND	SCCG	30.28
13.5	Sour Diesel Rooted, Leaf	HLVd	ND	SCCG	30.07
13.5	Sour Diesel Rooted, Leaf	HLVd	ND	SCCG	30.68
13.5	Sour Diesel Rooted, Root	HLVd	ND	SCCG	37.71
13.5	Sour Diesel Rooted, Root	HLVd	ND	SCCG	31.02
14.1	GMO Mom	HLVd	ND	SCCG	30.59
14.1	GMO Mom	HLVd	ND	SCCG	30.10
15.1	Strawberry Rooted, Leaf	HLVd	21.18	SCCG	28.04
15.1	Strawberry Rooted, Leaf	HLVd	21.31	SCCG	29.88
15.1	Strawberry Rooted, Root	HLVd	24.18	SCCG	30.05
15.1	Strawberry Rooted, Root	HLVd	25.44	SCCG	30.36
15.2	Strawberry Alive	HLVd	24.27	SCCG	31.74
15.2	Strawberry Alive	HLVd	25.56	SCCG	31.90
16.1	Strawnana Rooted, Leaf	HLVd	20.52	SCCG	29.52
16.1	Strawnana Rooted, Leaf	HLVd	21.21	SCCG	29.80
16.1	Strawnana Rooted, Root	HLVd	21.12	SCCG	29.12
16.1	Strawnana Rooted, Root	HLVd	22.16	SCCG	29.33
16.2	Strawnana Alive	HLVd	22.81	SCCG	30.74
16.2	Strawnana Alive	HLVd	22.02	SCCG	29.62
17.1	Triangle Wave Backup 2	HLVd	38.29	SCCG	33.04
17.1	Triangle Wave Backup 2	HLVd	37.78	SCCG	30.38
17.2	Triangle Wave Mom 2	HLVd	ND	SCCG	30.21
17.2	Triangle Wave Mom 2	HLVd	ND	SCCG	31.79
17.3	Triangle Wave Mom 3	HLVd	ND	SCCG	30.99
17.3	Triangle Wave Mom 3	HLVd	ND	SCCG	29.30
18.1	Trop Cookies Clone 1	HLVd	ND	SCCG	29.75
18.1	Trop Cookies Clone 1	HLVd	ND	SCCG	29.44
18.2	Trop Cookies Clone 2	HLVd	ND	SCCG	30.20
18.2	Trop Cookies Clone 2	HLVd	ND	SCCG	29.08
18.3	Trop Cookies Clone 3	HLVd	ND	SCCG	30.42
18.3	Trop Cookies Clone 3	HLVd	ND	SCCG	29.25
	Positive Control	HLVd	15.54	SCCG	39.26
	NTC	HLVd	ND	SCCG	37.64

Figure 4 Secondary structure (Puchta et al., 1988) of HLVd and localization of primers for RT-PCR analysis of viroid infection in pollen.

UCCR, upper part of the central conserved region; LCCR, lower part of the central conserved region; T1 and T2, left and right terminal domains. Primer binding sites are localized in the lower part of the viroid structure and cover a unique Pstl restriction site. Primers are represented by arrows and positions are designated by numbers; a, position of a non-specific nucleotide.

THE EMERALD Jamaican Lion Becoming A Reference Standard

Vendors are consolidating on the Jamaican Lion references

Tissue Culture has been optimized for JL.

SNP Chips are Validated on JL. August 2020 Launch.

Mini-Exomes are available targeting Cannabinoid, Terpene, Chitinase, Y-chromosome, TLP, Flowering, CannFlavin, Edestin

related genes.

Doug Klier (IGBR)- Tissue Cultured Jamaican Lion

85K SNP array

THE EMERALD CONFERENCE

Consortium of the leading technology providers to solve the complexity of the world's most valuable plant

- Blockchain experts and cryptocurrency
- Single Molecule Sequencing Pioneers
- Methylation, Enzymes and Sequencing Pioneers. Founded by Nobel Laureate Sir Richard Roberts
- Experts in qPCR and Hyb Capture
- Experts in GPU acceleration/AI
- Experts in Field Portable LAMP assays
- Cannabis Genomic Pioneers. Sequencing veterans. Leaders from the Human Genome Project

Yvonne Helbert Lei Zhang Heather Ebling Anne Bennett Juliana Silva Liam Kane Nathan Houde Steve McLaughlin Nick Lawson Matthew Brown

We want to hear from you!

Scan the QR code below to provide your feedback on the presentation.

