Produced by MJBizScience

Purification of Cannabis Extracts using Polysaccharide-Based 'Nanosponge' Adsorbents

Dr. Christopher J. Cordier, PhD Head of Chemistry Research, Grow Biotech LTD Grow Group PLC

chris.cordier@growbiotech.com

Produced by MJBizScience

Cannabis Extract Purification

crude extract

refined oil

active ingredient

Produced by MJBizScience

Cannabis Extract Purification

0

I

\$

ô

Cannabis Extract Purification

Advanced Machinery

- Energy Intensive
- ,→• *Multi-Stage*
 - Time Considerations
 - Expensive
 - Special Understanding
 - Highly Trained Staff

Cannabis Extract Purification

| 4, |

Highly Trained Staff

Reversible $\underset{\blacksquare}{\leftarrow}$

Operationally Simple

Reusable

Tuneable

Targeted

Low Tech Kit

Complementary

 \bigcirc

23

Å

Cost

- Hydrophobic core, H-bonding periphery
- Encapsulation of lipophilic drugs
- β-Cyclodextrin is cheap & ready available

- Hydrophobic core, H-bonding periphery
- Encapsulation of lipophilic drugs
- β-Cyclodextrin is cheap & ready available
- CD–Cannabinoid complexes known
 - Δ⁹-THC, Δ⁸-THC, CBD: Enhanced stability

Seminal: Preparation and Stability of Δ^9 -THC–β-Cyclodextrin Complex Shoyama *et al.* J. Nat. Prod. **1983**, 633

 <u>Detailed Study</u>: Structural elucidation of Δ⁹-THC–RAMEB Complex Hazekamp et al.
Eur. J. Pharm. Sci. 2005, 340

- Hydrophobic core, H-bonding periphery
- Encapsulation of lipophilic drugs
- β-Cyclodextrin is cheap & ready available
- CD–Cannabinoid complexes known
- Ring diameter is tuneable

- Hydrophobic core, H-bonding periphery
- Encapsulation of lipophilic drugs
- β-Cyclodextrin is cheap & ready available
- CD–Cannabinoid complexes known
- Ring diameter is tuneable
- Derivatization is well-established
 - Alkylated
 - Acylated
 - Anionic / Acidic
- 2022 MIBIZ, a division of Emerald X. LLC Cationic / Basic

Weihua Tang

Siu-Choon Na

- Hydrophobic core, H-bonding periphery
- **Encapsulation of lipophilic drugs**
- β -Cyclodextrin is cheap & ready available
- **CD–Cannabinoid complexes known**
- **Ring diameter is tuneable**
- Derivatization is well-established
- **Polymeric & matrix-supported forms are known**
 - Silica-supported (HPLC)
 - **Cross-linked forms (Water Treatment)**

© 2022 MIBiz, a division of Emerald X. LLC

Cyclodextrins: Guest–Host Platform

- Hydrophobic core, H-bonding periphery
- Encapsulation of lipophilic drugs
- β-Cyclodextrin is cheap & ready available
- CD–Cannabinoid complexes known
- Ring diameter is tuneable
- Derivatization is well-established
- Polymeric & matrix-supported forms are known

Cost 🧰

Operationally Simple

Reusable

Tuneable

Targeted

Low Tech Kit

 \odot

Complementary

Cyclodextrin Polymer Synthesis

Cyclodextrin Guest–Host Equilibria

Solvent Considerations:

- Solvent choice will affect position of equilibrium
 - "Poor" solvent will promote binding

Produced by MJBizScience

Cyclodextrin Guest–Host Equilibria

Solvent Considerations:

- Solvent choice will affect position of equilibrium
 - "Poor" solvent will promote binding

© 2022 MJBiz, a division of Emerald X, LLC

• "Good" solvent will dissociate CBD

Complex Precipitation Protocol

>95 Ethanol <5 85 Ethanol:H₂O(1:1) 15

>95 Ethanol <5 85 Ethanol:H₂O (1:1) 15

Ethanol: $H_2O(1:1)$

15

85

Produced by MJBizScience

Produced by MJBizScience

Produced by MJBizScience

Exploring Tuneability & Selectivity

© 2022 MJBiz, a division of Emerald X, LLC

Produced by MJBizScience

Exploring Tuneability & Selectivity

© 2022 MJBiz, a division of Emerald X, LLC

Produced by MJBizScience

Produced by MJBizScience

Produced by MJBizScience

Produced by MJBizScience

Produced by MJBizScience

Current Workflow

Target Compounds in Biomass

Produced by MJBizScience

Current Workflow

Target Molecules in Solution

Partial Binding to Polymer

Produced by MJBizScience

Current Workflow

Impurities in Solution Phase

EMER ΉE

Produced by MJBizScience

Current Workflow

Impurities in Solution Phase

Current Workflow

Reusable Polymer (>10x cycles)

Produced by MJBizScience

Current Workflow

Current Direction

Produced by MJBizScience

Current Direction

Broad Spectrum Protocol:

- High CBX recovery (>95%)
- Acids & Decarboxylated
- •Binds to CBG/A, CBD/A, THC/A, CBN/A, CBC/A
- •Captures terpenes
- Polar impurities removed
- •Waxes & lipids are avoided
- Initial pigment removal

Complementary

Low Tech Kit

Broad-Spectrum Protocol: 1-10+ kg scale with partner processors in EU & NA Detailed chemical analysis

Market

Alternative Workflows

Continuous Extractions:

Built-in solvent recycling Uses EtOH–H₂O Mixture Azeotrope: 95% EtOH Capture occurs in lower flask Performed under vacuum Close to ambient temperature

Chromatographic Applications:

Automated Dual LC-SFC Systems Loading in EtOH-H₂O N, Purge -> scCO, Elution

Raymond Wong

Senior Product Manager at Shimadzu UK Limited

Produced by MJBizScience

Current Workflow

Reusable Polymer (>10x cycles)

Current Direction

Produced by MJBizScience

Current Direction

© 2022 MJBiz, a division of Emerald X, LLC

Produced by MJBizScience

Current Direction

<u>Target-Selective Protocols:</u> Exploit Unique Polymer Binding

Current Direction

Produced by MJBizScience

<u>Target-Selective Protocols:</u> Exploit Unique Polymer Binding

Summary & Acknowledgements

Summary

- Procedurally simple, fast, low-tech
- Applicable to many plant extracts
- Dry biomass not needed
- •Collaborations:
 - Contract Manufacturers
 - •Licensed Processors
 - •Analytical Teams
 - •Computational Groups

<u>Thanks to</u>

- •Rothamsted Agricultural Research Institute, UK
- •University College London, UK
- •Shimadzu, M-Tek Glass, ITA Labs, UK
- Intertek, Switzerland
- •Grow Group: Grow Pharma, Grow Trading, Grow Germany, Grow Biotech

We want to hear from you!

Scan the QR code below to provide your feedback on the presentation.

