THE EMERALD CONFERENCE

Produced by MJBizScience

Droplet Size Analysis of Emulsions and Nanoemulsions

Mark Bumiller Technology Manager Entegris, Inc.

Outline

- Emulsions
- Formulation
- Particle/droplet size
- Analytical Techniques
- Standardization

Emulsions

- Two phase system
- Oil = dispersed phase
- Water = continuous phase
- Required energy + emulsifier (surfactant)
- Formulation: surfactant(s), surface chemistry, taste
- Energy: mixers, homogenizers, ultrasonics, microfluidizers

Produced by MJBizScience

Dispersion Stability

Reduce size – minimize gravitational settling Increase charge – minimize electrostatic attraction

Zeta Potential (Surface Charge)

THE EMERALD CONFERENCE

Produced by MJBizScience

ISO Electric Point (IEP)

Size & Zeta Potential by Dynamic Light Scattering (DLS)

- $D = kT/6\pi\eta R$
- D = Diffusion coefficient
- k = Boltzmann's constant
- T = Temperature (Kelvin)
- H = Viscosity of solvent
- R = Radius of particle

Size & Count by Particle Counter

Cannabis Processing

Preparation

Growing Harvesting De-stemming Drying Size reduction Decarboxylating Extraction

Solvent extraction

- CO₂
- Ethanol
- Hydrocarbons

Water extraction

Refinement

Filtration Solvent evaporation Crystallization Distillation Separation

Ultrasound Homogenizer Microfluidizer

Materials

- CBD Oil, Cheef
- Tween 80, Sigma Aldrich P1754 HLB = 15
- Span 80, Sigma Aldrich
 S6760 HLB = 4.3
- StuphCorp[™] Part B, no published HLB value

- Entegris Nicomp ZLS3000 DLS system for submicron size + zeta potential
- Entegris AccuSizer APS SPOS instrument for emulsion stability analysis, size + concentration
- Hielscher UP400St ultrasonicator

THE EMERALD CONFERENCE

Produced by MJBizScience

CBD Oil

Analyte	Results (mg/mL)
CBD	37.0096
CDC	1.3279
Δ9-THC	0.8284
CBDV	0.7144
CBG	0.6405
Δ8-THC	0.1125
Total	40.6335

37 mg/mL 1 mg/mL

Formulations

- Formulation 1 = 4 parts Span 80 + 1 part Tween 80, combined HLB = 6.97
- Formulation 2 = 1 part Span
 80 + 1 part Tween 80,
 combined HLB = 9.65
- Formulation 3 = Part B, no
 HLB number provided

- Pour 25 grams of component B into beaker 1
- Heat beaker 1 to a temperature range of 55°C
- When step 2 is at temperature, add 3 grams of oil to beaker 1
- Fill beaker 2 with 70 grams of water, Heat cup to 55 °C
- Place beaker 2 under the ultrasonic sonotrode.
- Position the bottom of the sonotrode just below the surface of the water.
- Start sonicating beaker 2
- Pour beaker 1 slowly and steadily into beaker 2
- Move beaker 2 in a circle motion while sonicating
- Remove samples from beaker 2 at defined time interval for analysis
- Stop process when all liquid is homogenized and clear

Sonication

Formulation 3

Formulation 1

Size (nm) vs. Sonication Time

Minutes	Form 1	Form 2	Form 3
2	257.62	314.31	52.99
4	224.14	248.58	47.38
8	220	231.31	39.58
10	219.43	230.6	34.33

Formulation	Zeta Potential (mV)	
1	-28.59	
2	-34.41	
3	-24.32	

THE FMER Produced by MJBizScience

DLS; Intensity, Volume, Number

Basis	Size (nm)	
Intensity	219.4	Intensity
Volume	152.4	
Number	58.6	

Variance (P.I.) = 0.231 Chi Sauared = 2.161 Baseline Adi. = 0.000 % Z-Ava Diff. Coeff. = 2.12E-008 cm2/s

Primary result from DLS Compare to laser diffraction

GAUSSIAN SUMMARY

(Coeff. of Var'n)

Mean Diameter = 152.4 nm

Norm. Stnd. Dev. = 0.481

Variance (P.I.) = 0.231Chi Sauared = 2.161 Baseline Adj. = 0.000 % Z-Ava. Diff. Coeff. = 2.12E-008 cm2/s

AUSSIAN SUMMARY Mean Diameter = 58.6 nm Variance (P.I.) = 0.2311% Chi Squared = 2.161Norm. Stnd. Dev. = 0.481 Baseline Adi = 0.000 % (Coeff. of Var'n) Z-Avg. Diff. Coeff. = 2.12E-008 cm2/s

Compare to SEM

Basis of Distribution

Three particles: 10, 20 & 30 µm

Number: equal portions

Volume: weighted to largest size

Number mean = 20

Volume mean = 27

Standardization; ISO, USP (PF)

• ISO 22412

Intensity mean Polydispersity (PI)

• USP 430 (Discussion)

INTERNATIONAL ISO STANDARD 22412

Particle size analysis — Dynamic light scattering (DLS)

11 Test report

The test report shall contain at least the following information [points k] to r) are taken from ISO/IEC 17025]:

- a) average particle size, \overline{x}_{DLS} , and its uncertainty;
- b) an indication of the polydispersity of the sample (for example, the polydispersity index);

Same

© 2022 MIBiz. a.c.

(430) PARTICLE SIZE ANALYSIS BY DYNAMIC LIGHT SCATTERING

Average particle diameter ($\overline{\chi}_{DLS}$): Harmonic intensity-weighted averaged particle diameter expressed in nanometers. Polydispersity index (PI): Dimensionless measure of the broadness of the particle size distribution.

$$\overline{x}_{\text{DLS}} = \frac{1}{a_1} \frac{kT}{3\pi\eta} \left[\frac{4\pi n \sin\left(\theta / 2\right)}{\lambda_0} \right]^2$$

PI	туре	
0-0.05	monodisperse standard	
0.05-0.08	nearly monodisperse	
0.08-0.7 mid range polydisperse		
>0.7	very polydisperse	

-

Particle Counter Results

Counts/mL (Number)

Volume%

PFAT5	Result
0.036	Pass
0.09915	Fail
0.0084	Pass
	PFAT5 0.036 0.09915 0.0084

USP 729 PFAT5

- Method I; mean size
 - DLS or laser diffraction
 - Must be < 0.5 µm</p>
- Method II; % > 5 μm
 - SPOS; AccuSizer APS
 - PFAT5 < 0.05%</p>
 - Indicates stability
 - Patient safety

FMFR Produced by MIBizScience

- Nanoparticles: Size (diameter) <100 nm
 - ISO/TS 27687:2008
 - ASTM E2456-06
- Emulsion; 0.1 100 μm
- Microemulsion*: Thermodynamically
- stable, D = 5-50 nm, self-assembled
 Nanoemulsion*Thermodynamically
 Is free energy higher or lower
 separate state or two phase unstable, r < 100 nm
- Microemulsion < Nanoemulsion (often) $10^{-6} > 10^{-9}$

* McClements, D.J., Nanoemulsions versus microemulsions: terminology, differences, and similarities, Soft Matter, 2012, 8, 1719–1729 | 1719 @ 2022 MIBiz, a division of Emerald X-LL

"Nanoparticles/ Nanoemulsions"

- But Nano sounds better than Micro
- Branding & Packaging

Check Width (PI)

Which is more stable?

107 nm PI = 0.094, Narrow Distribution

86 nm PI = 0.255, Broad Distribution

Liposomes

Liposome A; Size = 106.9 nm, PI = 0.094 Liposome B; Size = 142 nm, PI = 0.048

Conclusions/Acknowledgements

- Formulation critical
- Need to measure size, width
- Zeta potential for surface charge, pH
- Particle counter for large droplets
- Get trained

- Entegris, Inc.
- David Schaible of Pharmacann
- Michael Hnatow from Stuff Corp

We want to hear from you!

Scan the QR code below to provide your feedback on the presentation.

